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A functional approach to scattering theory in quantum field theory i s developed 
by deriving an explicit functional expression for transition amplitudes. In applica- 
tions, the formalism avoids dealing with noncommutativity problems of field 
operators, avoids solving the field equations, avoids dealing with the often quite 
complicated continual (path) integrals, and avoids combinatoric problems associ- 
ated with Feynman rules and the old-fashioned Wick's theorem. Finally, it avoids 
explicitly taking mass shell limits as in the LSZ formalism. The basic idea of 
the formalism is to use the quantum action principle followed by a systematic 
analysis of the concept of stimulated emissions as applied to particles of any 
spin, and is a generalization of an earlier method applied by the author to the 
much simpler situation of quantum mechanics. 

1. I N T R O D U C T I O N  

The purpose  o f  this paper  is to generalize the functional  approach  
to scattering theory  developed earlier (Manoukian ,  1987) in quan tum 
mechanics  to quan tum field theory. We derive an explicit functional  
expression for t rans i t ion  ampli tudes for scattering in quan tum field theory. 
The method  of  applicat ions avoids dealing with noncommuta t iv i ty  proper-  
ties o f  field operators  usually encountered,  avoids solving any field 
equations,  and avoids dealing with the often quite complicated continual  
(cf. Feynman  and Hibbs,  1965; Faddeev,  1981; Manoukian ,  1985) path 
integrals, as it provides a solution to the latter. It also avoids dealing with 
combinator ic  problems (such as guessing correct  weight factors) associated 
with the so-called Fe ynm a n  rules and the old-fashioned Wick's  theorem, 
and the analysis does not  even involve creation and annihilat ion operators.  
Finally, it avoids dealing with mass shell limits as in the LSZ formalism 
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(cf. Weinberg, 1970), which becomes quite involved when one is dealing 
with higher spin fields. The basic idea of the formalism is to use the quantum 
action principle (Schwinger, 1951, 1954; Lain, 1965; Manoukian, 1985) or 
its modificatiqn (Manoukian, 1985) as applied to non-Abelian gauge theories 
(Manoukian, 1986a) followed by a systematic analysis of the concept of 
stimulated emissions by external sources developed earlier (Manoukian, 
1986b). In Section 2, the expression for transition amplitudes is derived. 
Section 3 gives some applications to particles with different spins, and a 
comparison with the more standard approach is finally made. In the conclud- 
ing section (Section 4) some additional remarks are made. 

2. FUNCTIONALS AND TRANSITION AMPLITUDES 

We consider the field operator r appearing in the Lagrangian 
density L(r to be coupled linearly to external c-number sources Ki(x). 
(The Lagrangian density, of course, depends also on the derivatives of the 
fields.) A quantum mechanical parameter(s) will be denoted by h. In general, 
we have the functional relation 6Ki(x) /6Kj(x ' )= 6~6(x-x ' ) .  Scattering in 
and out states are denoted by [g_) and [f+), respectively. 

The quantum ~tction (dynamical) principle (Schwinger, 1951, 1954; 
Lam, 1965; Manouk'i'an, 1985) then reads 

o (f+lg_)K,,~ = i (dx) L' (f+lg_) K,,A (1) 
OA 

which integrates to 

' [ - i 6 \  ](f+lg_) K''~ (2) 

Here (dx) = dx ~ dx 1 dx 2 dx3; L I ( - i 6 /  ~K~), in general, denotes the interac- 
tion Lagrangian density with the fields r in it replaced by - i6/6K~. In 
gauge theories the interaction Lagrangian is supplemented (Manoukian, 
1986a) by a Faddeev-Popov factor (Faddeev and Popov, 1967); see Section 
3. The expression for (f+lg-) denotes the transition amplitude we are seeking. 
(f+[g_)K,o denotes the transition amplitude in the presence of the external 
sources (Manoukian, 1986b) with no coupling (,~ -= 0) between the particles. 

For simplicity of the notation, consider a field theory of one type of 
real scalar particle with an interaction Lagrangian density L1(r Let K(x )  
denote an external c-number source. Let 

f - K ( p )  = (dx) e-'XPK(x) (3) 
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and in a convenient discretization notation (Schwinger, 1969, 1970; 
Manoukian, 1984) for the momentum variable we set 

Kp = (dwp)l/2K(p), dwp = d3p/2p ~ pO = + ( p 2 +  m 2 ) 1 / 2  (4) 

Consider the scattering of M particles, Mp~ of which each has a 
momentum Pl; Mp2 of which each has a momentum P2; and so on ( M p +  
Mp2+ . . . .  M);  to N particles, Np, of which each has a momentum p~; N,2 
of which each has a momentum P2; and so on (Np, + Np2+ . . . .  N).  Then 
(Manoukian, 1986b) (f+ig_)K,o is given by 

(N;  Np,, Np2, . . .  IM; Mp,, M,2,...)K 
= (Npl! Npz! . . .  Mm! Mp2!...)1/2 

(iKo,)u,,-'%, (iKp2) N,2-%2 (0+10_) K 

xE*  ( N p - m p , ) !  (N,2-rnp2)! rnp,!mp21... "" 

(tKp2) ,2 ,2 (5) •  �9 * M - m  �9 . . 

(Mp-mp,)! (M.=-mp2)t 
where Y~* stands for a Summation over all nonnegative integers mp~, mp2 , . . .  
such that 0 < - m,,-< min(Np,, Mr,) , i = 1, 2 . . . . .  

Here (0+]0_) K denotes the vacuum-to-vacuum transition amplitude, in 
the presence of the external source K(x) ,  and is given by the well-known 
expression 

(0+I0_)K =exp[~ f (dx)(dx')K(x)A+(x-x')K(x')] (6) 

f ( d p )  e -+ +0 (7) 
e i p ( x - x  ') 

A + ( X  -- X ' )  = (2 , / r )4  p2 + m 2 _ i e '  

As an example, consider the scattering of r particles with nonoverlapping 
momenta p l , p 2 , . . . , p r  to s particles with nonoverlapping momenta 
Pr+~, . . . ,  Pr+,, then equation (5) reads 

(s; a n ..... . . ,  ap,+~ir; lp,, . . ,  l p r )  K �9 r + s  " . . . .  K g< ( 8 )  �9 . = ( I )  K p ,  " K p K p * +  I p .... 

where pO= (p2+ m2)1/2 i= 1 , . . . ,  r+s .  Hence the exact expression for the 
transition amplitude (2) is given from (8), (3), and (4) to be explicitly 

Fr+s I A 3 n \ l / 2  f dxsexp(-iesxjPs)] 
- i a  

x K(x , )  �9 �9 �9 K ( x , ) K * ( x , + , ) . . .  K*(x,+,)(0+10_)" (9) 
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where e j = + l ,  for j = l , . . . , r ;  e j = - I  for j=r+l, . . . ,r+s; with the 
elementary rule that ~K(x)/3K(x') = 6(x-x'). The general expression cor- 
responding to (5) has been worked out (Manoukian, 1986b) for higher spins 
as well, and a corresponding expression to the transition amplitude in (9) 
can then be written out. 

3. APPLICATIONS AND COMPARISON WITH THE STANDARD 
APPROACH 

a 

For non-Abelian gaoge theories with the vector field A~ interacting 
with matter, one may take (Manoukian, 1986a), in the presence of external 
sources, 

where 

- ~ ,~  a - + d ~ +  a ,~,~ +goOy~A t O+nO J~A (10) 

in a standard notation. By working in the Coulomb gauge akA ka= 0, k = 
1, 2, 3, then the interaction Lagrangian density L~, not involving external 
sources, is automatically supplemented by the presence of a Faddeev-Popov 
factor (Manoukian, 1986a) and the expression for the transition amplitude 
becomes 

(f+lg_)=exp[i f (dx) L'~(A'~a, o', ~ ') 

+ Tr ln( ~Ob + gofaCb-~ A'[ok ) ](f+lg_)n'~'J (12) 

where A~ ~ = - i 6 / 6 J ~ ,  0 '= -i8/6~, tp '=-i~/Sn.  The general expression 
(f+lg_) "'~'j for free spin-one particles interacting with the external source 
J~, and free spin �89 particles interacting with external sources 7/and 4, can 
be read directly from our earlier work (Manoukian, 1986b) and will not be 
repeated here. 

Finally, we compare our expression for the transition amplitude with 
the standard approach. To this end we consider, for simplicity of notation 
only, a spin-�89 field 0 interacting with a scalar field ~b. The fields 0, qT, and 
0 are coupled linearly to external sources 4, ~7, and K, respectively. The 
interaction Lagrangian density is taken to be goq70~b. 
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Upon defining 

d3p\ 1/2 
2m-2-~pO) ~(p)u(p, o') = ~p*_ (13) 

2m a(p, ~')n(p) = np~ (14) 

we can use equation (54) in Manoukian (1986b) and equation (5) above 
together with equation (2) to write the explicit expression for the transition 
amplitude. For simplicity consider the scattering process p6 -* P6, where p 
is the spin-�89 particle. Let the incoming and outgoing momenta and spins 
of the fermion be (kl, or1) # (k2, or2), respectively. Let the incoming and 
outgoing momenta of the scalar particle be qa r q2. Then from (2), (5), (13) 
and (14) above, and equation (54) in Manoukian (1986b), we can write 
for the transition amplitude associated with the process [(kl, o-l),q~]~ 
[(k2, o-9, qd: 

( -\4{~ c13k1~ ~/2/ l/~ ') kzmT~l ] ~2md3k2~l/2[ d3q1~l/2(d3q2"~ 

x f (dxl) �9 �9 �9 (dx4) exp(-iklXl) 

x exp(ik2x2) exp( -  iqlx3) exp(iq2x4) 

x ti(kl, o1) exp igo (dx) (-i) 6 - ~  (-t) 6 -~ )  (-t) 6--k~x) 

x n(x,)9(x:)K(x3)g*(x4)u(k2, ~) 

x <o+1o__> ~ <o+1o_>~,~ I ~ ~o;~,~ =o (15)  

where (0+[0_) ~ is given in (6) and 

(O+lO-)'"~ = exp[ i f (dx)(dx')~(x)S+(x-x')rl(x')] (16) 

f (dp) {exp[ip(x-x')]}(-yp+m) 
e ~ + 0  (17) S+(x - x ' )  = (27/.) 4 p2.+ m 2 - ie ' 

Now for any functional F[K] of K we may use the property of the 
translation operator 

exp[f (dx)f(x)6@(x)]F[K]=F[K+f] (18) 
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to write 

e x p [ i / ( d x )  L'I] rl(Xl)~(xi)K(x3)K(x4){O+lO_)K{o+,o_) n'~ 

= n(Xl) -go aIC-(x,) a~-(x,) 

[ ~l(x2)-go 8 ~ ~ ] • ~x~) a~-(x~) 

X g ( x 3 ) - g o  (~(23) ~77(-x3) 

[ 8 t5 ] (O+lO_) e~a,~t,~ 
X K(x4)--gO an(X4) (~,~?X4) 

where 

Manoukian 

(19) 

K,~,f/ 
(0+10-) . . . .  t ~ (0+10-) 

is (up to an unimportant numerical factor) the transition amplitude in the 
presence of the external sources, for go # O. 

The functional differential equations are 

= ~(x)+go(- i )~- -~- -~( - i )~  (0+10_) (20) 

=- ~l(x)+go(-i) 8--~---~(-i ) (0+10_ } (21) 

(-E2 + Mg)(-i) ~ (0+10-) 

= K(x)+go(-i)-2-T~,,(-i) (0+10-) (22) 
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From (15) and (19)-(22) we obtain the familiar LSZ expression for 
the transition amplitude: 

3 1/2 3 1/2 3 , . ,4 / /  d k,~ [~ d k2~ / d  ql~l/2:d3ql~ 1/2 
U) z m-x-C6-, o z m-:-~, o "7"--6- 

k 2 k l )  I 2k2) ~ 2 q , )  \ 2 q  ~ I 

X f (dXl) �9 �9 �9 (dx4) 
e--iklXl e ikEX2 e-qlx3 e iO2x4 

X t~(kl, tr,) +too ~---~---mo)(-7l~+M~) 

x (-V124 + M2)r(xl,  x2, x3, x4)] u(k2, crz) (23) 

where 

3 
"r(x1 , X2, X3, X4) : (-- i)  ~ (--i)  ~ (-- i)  

x ~ ( x 3 )  (_i) cS ~=o,,=o,~=o (24) 

This completes the demonstration of the consistency of our formalism with 
the standard approach. 

4. CONCLUSIONS 

The functional expression for transition amplitudes [e.g., equation (9)] 
has several advantages over the standard approaches. Many of these were 
mentioned in the introduction. In particular, we note also that since our 
formalism does not involve the full Green's function, it is quite suitable for 
systematic perturbative analyses, and for the problem of renormalization, 
in general. The gauge problem of transition amplitudes may be also discussed 
directly within our formalism from the known gauge properties of the 
vacuum-to-vacuum transition amplitudes studied in detail for Abelian and 
non-Abelian gauge theories in Manoukian (1986a). Such an analysis of the 
gauge problem of transition amplitudes themselves will be carried out in a 
future report. 
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